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ABSTRACT

Davies and Shanbhag (1987) identified, under some mild conditions. the
solution to the convolution equation

H(x) = ]sn(xw)u(dy), xes

T -
o - -
B

where S is a Polish Abelian semigroup with zero element, H: S +R,, a
nonnegative continuous function and u is a measure. A variant of the re-
sult in the case where H is bounded and u is a certain bounded signed measure
is obtained. This provides a generalized version of the Choquet-Deny theorem
where u is considered to be a probability measure and S to be a group.

The stability of the solution to the above equation is examined by
adding an error term. Further, solutions to simultaneous eguations of the
above type are considered, The results of this paper generalize those
obtained by Gu and Lau (1984), Lau and Rao (1982), Ramachandran et al

(1987), Shimuzu (1978) and others for S = R or R,.
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1. INTRODUCTION

Let S be a Polish Abelian semigroup with zero element, H: S +R,
a nonnegative continuous function and u a measure on (the Borel o-field
of) S such that the following integral or (inverse) convolution equation

is satisfied:

H(x) = JSH(x+y)u(dy), x e S. (1.1)

Recently, Davies and Shanbhag (1287) studied (1.1) and showed in partic-
ular that if S is embeddable into a locally compact second countable
Hausdorff Abelian group and certain ;%ld conditions are satisfied, then
the H in (1.1) has an integral representation as a weighted average of
the u-harmonic exponential functions on S. A function e: S -+ R+ is
called an exponential function if it is continuous and satisfies
e(x+y) = e(x)e(y) for all x, y € S; an exponential function e is called
pu-harmonic if it satisfies fSe(x)u(dx) = 1. A special case of this re-
sult with S itself as a locally compact second countable Hausdorff
Abelian group was established earlier by Deny (1961) and its specialized
version when H is bounded (with a modification that it is not necessarily
nonnegative) and u is a probability measure by Choquet and Deny (1960).
As shown by Shanbhag (1977), Shimizu (1978), Rao (1983), Lau and
Rao (1982, 1984), Rao and Shanbhag (1986), Ramachandran (1982, 1984) and
Davies and Shanbhag (1987), these results have applications not only in
renewal theory but also in characterization theory of probability dis-
tributions. Several characterizations of the exponential, Weibull and
geometric distributions (or their variants) based on record values,

order statistics, hazard function and the mean residual life function

..........
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etc., follow from these results. The Rao-Rubin theorem (1964) on damage
models in a global form leading to characterizations of.several discrete
probability distributions and related characterizations of point pro-
cesses and characterizations of stable distributions based on a certain
factorization can also be obtained from these results.

Shimizu (1978) and more recently Ramachandran et al (1987) have
considered several modified versions of (1.1) in the case of S = R or
S = R, that have applications in characterization theory especially
in connection with stable distributions. Shimizu (1980) and Gu and Lau
(1984) have also discussed (1.1), in the specialized situation of
S =R,, involving an additional error term; these latter results are
useful in arriving at stability versions of certain characterization

properties.

' Tn~%he—;regé;t paper,rw;;;;; at extending the Davies-Shanbhag
(1987) result to situations covering the problems considered by Shimizu
(1978, 1980), Gu and Lau (1984) and Ramachandran et ai (1987).
Section Z,fwé\give%the results when H is bounded adé§;:¥§/replaced by
a certain bounded signed measure subsuming the specialized versions of
the results given earlier by Shimizu (1978) and Ramchandran et al (1987);
these turn out to be also extended versions of the Choquet-Deny theorem.

© I Section 3.,wefconsider%an extension of the Davies-Shanbhag result
for the case of two simultaneous equations yielding the results of
Ramachandran et al (1987) and those arrived at by some of the authors

as special cases. - Im Section 4, we obtain extended versions of the re-

sults involving error terms given earlier by Shimizu (1980) and Gu and

; Lau (1984), and finally in Section 5, we discuss some app]ications,
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2. EXTENDED VERSIONS OF THE CHOQUET-DENY THEOREM
The following results are various extensions of the Choquet-Deny

theorem:

THEOREM 1. Let S be a Polish Abelian semigroup with zero element,

H: S + R a bounded continuous function, and pu and v subprobability

measures on S such that p + v is a probability measure on S and
H(x) = [Su(xw)(u-v)(dy). X es. (2.1)
Also Tlet s

c=p+ J V2L (2.2)
m=0

with the usual notation for convolution. (Clearly the measure ¢ defined

here is a probability measure.) Then for each x e S,

H(x+y) ifye $*(¢) (and hence if y e supp(n)),
H(x) = (2.3)
-H(x+y) if y e supp(v),

where the notation supp(-), as usual, stands for the support of the mea-
sure (concerned) and the notation S*(-) stands for the smallest closed

subsemigroup of S with zero element such that it includes the support of

the measure.
Proof. We can rewrite (2.1) as

H(x) = [Sn(xw)u(dy) ; [Su(xw)v(dy), xes (2.4)

yielding in view of Fubini's theorem

-
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H(x) = an(xw)(uw*z)(dy) - jSH(xw)v*u(dy)

= ! H(x+y)<u + g v*z*u*m)(d}’) - [ H(x +y)v*u*(n+])(dy),
S m S

0,1,..., x €8S, (2.5)

=
]

Observe that to arrive at (2.3), we have used successively the relation \

Isu(x ty)uru(dy) = jSUSH(x +y +2z)u(dz)

- [SH(X +y+ z)v(dz)}v wu"(dy)

) [sH(x £y # (M) 4y

. [Sn(x Fy ) e M ay),

n=20,l,..., xeS. . ]

Using, in particular, the fact that H is bounded and n(S) + v(S) = 1,
we see that for each x e S, the expression on the right-hand side of
(2.5) tends as n + = to ISH(x-+y)c(dy) with o as the probability mea-

sure given by (2.2). We have then the integral equation

H(x) = ISH(x-+y)o(dy), x eS. (2.6)

The proof of Corollary 1 of Theorem 1 on p.21 of Davies and Shanbhag
(1987), except for its last sentence, remains valid in the case of the

equation (2.6) and yields that

H(x+y) = H(x), x eS, y e $¥(o). (2.7)
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The equation (2.7) establishes the first part of the assertion (2.3)

and in turn implies
H(x+y) = H(x), xeS, yesupp(u) U supp(v*?) (2.8)

giving in view of (2.1)

H(x)v(S) = -fsu(xw)v(dy), X es. (2.9)

We have now to establish only the second part of the assertion (2.3).
This result is trivially valid for v(S) = 0. We can therefore assume

that v(S) > 0. If z e supp(v), then z + supp(v) < supp(v*z) and hence
we get from (2.8) and (2.9)

H(x + z)v(S)

-[Sn(x+z+y)v<dy)

-H{x)v(S), x eSS,

which implies in view of the assumption v(S) > 0 that
H(x+2z) = -H(x), x e S.
Consequently, we have the second part of the assertion in question,

and hence the theorem. 0o

COROLLARY 1. The assertion of the theorem holds if the assumption
that H is bounded is replaced by the weaker assumption that H(- +y) - H(-)
is bounded for each fixed y e supp(u) y supp(v) (with the implicit re-

- AN \11:1:34' w”

quirement that H is (u+v)-integrable) provided v(S) > 0.

oy

»
)

Proof. For every y e supp(u) U supp(v), on applying the theorem to
H(- +y) - H(-), we have

P l‘—k}“". -
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H(- +y) - H(-) if 2z e S"(c)
H(e +y+2z) - H(++2) = (2.10)
..(H(.+y) - H(.)) if z e supp(v).

From the first equation in (2.10), we get for every x € S, y e supp(v)
and z € S*(o)
H(x+y+2z) - H(x+y) = H(x+2z) - H(x)

and from the second equation in (2.10), we get for every x e S,
y e supp(v) and z e supp(p)

Hix+y+z) - H(x+y) = -(H(x+2) - H(x)).
Consequently, it follows that H(x+2z) - H(x) = 0 for every z € supp(u)
and x € S. On integrating the second equation in (2.10) over y with re-

spect to measure v and simplifying, we get in view of (2.1)

I$Hb+y+z)+rﬂ.+yDuUW)-(Hp+z)+;ﬂ.0

v(S){H(+ +2) + H(+)}, z € supp(v). (2.11)

Since H(- +y) = H(+), y e supp(u), (2.11) implies readily that
-v(S){H(++2z) + H()} = v(S){H(*+2z) + H(-)}, z e supp(v),

which implies in view of the assumption v(S) > 0, the second part of the

assertion (2.1). The first part of the assertion is now obvious in view

of the continuity of H and what is already arrived at. g

COROLLARY 2. Let S, u, v, H, o and S*(c) be as in Corollary 1. 2
If there exists a dense subset A of S such that for every x € A we have
ayeS*(o) with x +y e S*(o), then
H(x) = H(0), x eSS
and either H(0) = 0 or v(S) = 0.
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Proof. From the theorem we get

H(x+y) = H(x), x eSS, y € S*(a). (2.12)

This implies that H(x) = H(x+y) = H(0) for every x € A and y e $™(o)
and hence in view of the continuity of H, we have H(x) = H(C) for all
x € S. From the equation (2.1) or from the second assertion of the

theorem, it is then clear that either H(0) = 0 or v(S) = 0. O

Remark 1. Corollary 2 yields the Choquet-Deny theorem as
a special case and hence this result, as well as Theorem 1 and Corol-
lary 1, could be considered as extensions of the theorem in question.
Theorem 1 and Corollary 1, for special cases of S = R, and S = R, have
been dealt with either by Shimizu (1978) or by Ramachandran et al (1987);
the arguments used to establish the results for the generalized situatibn
of the present paper have been adapted from Ramachandran et al (1987)

with the required modifications.
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% 3, TwO SIMULTANEOUS INTEGRAL EQUATIONS h
b

! Let S be a Polish Abelian semigroup with zero element, G: S + R, and 3
L]

; H: S - R, continuous functions, and u and v measures on S such that y
| 3
x) = [ atxeydulay) + [ Hxeydsay), w6 s ‘

S S q

‘ (3.1) e
t . o'
) = [ HOxenu(a) + [ stxenvian, w6 s :

S S A

2

The equations (3,1) for S = R

-
-
ey

+ and S = R have been dealt with by many

-
- -
FENgRY

authors including Ramachandran et al (1987) in connection with the charac-
terization problems of probability distributions; we shall provide the

S necessary details in Section 5 of the paper., It is interesting to note that
(3.1) with v(S) = 0 reduces to a set of two equations of the type considered

by Davies and Shanbhag (1987) and hence (3.1) may be viewed as a generalization
of the Davies-Shanbhag integral equation. From what is shown in Davies and
Shanbhag (1987), it is clear that to have the integral representations of

Deny or something close to it for G and H in (3.1), we require some further

= Gy PN e R Y g T

conditions tc be met, . \

Following the notation of the last section, we shall now introduce )

the condition given below: L

-

CCNDITION A, Let § be the smallest closed subsemigroup of S with zero

Y e

element such that it includes supp(u) U (SUpp(v) + supp(v)). The S satis-

"
-

T oS54 . VORI

fies supp(v) < S and there exist subsets B and D of S with the following
properties :

(a) BedsB(S), (u+v)(S\B) =0,

(b) the subsemigroup generated by D Y S$*(n +v) is dense in S,

(c) for every x € D and z € B\ {0}, we have n > 0, k > 1 and Yys eee

LM¢MR&WI&&&MMM
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in Sf(u-+v) such that

x+nz+.y.I +"‘+yr-1 eS+yr, r=1,2,...5k

and
X+nz+y +.ty € S*(u-+v).

We have then the following theorem,

THEOREM 2. Suppose u({0}) + v({0}) < 1, and the Condition A is met.
Then either H(x) = G(x) = 0 for all x € S or we have a probability space
(a,4, P) and product measurable functions £yt Sxq R,, i = 1,2 such that
G(x) = G(O)E(E1(X.‘)), H(x) = H(O)E{Ez(x.-)}. x € S and the following con-
ditions are met:
(1) Eilx+y,®) = E5(x,2)E,(y,*) aws. [P] for all x,y € s*(u +v),
i=1,2.

(i) Jsai(x,-)(uh))(dx) =1 a.s. [P, §=1,2.

(1i1) gq(x,+) = 0 if &x) = 0 and G(O) # 0 and gz(x,-) =0 if
H(x) = 0 and H(0) # 0.
. Proof., Observe that (3.1) implies
G{x) + H(x) = JS(G(x+y)+H(x +y))(u +v)(dy), x e S. (3.2)

Consequently from Lemma 5 of Davies and Shanbhag (1987), it follows that

G(x) + H{(x) = 0 for a1l x € S if G(0O) + H(0) = 0. We now need only the
case of G(0) + H(0) > 0 and hence without loss of generality that of

G(0) + H(0) = 1 to be considered. From the argument leading to (41) in
the proof of Theorem 2 of Davies and Shanbhag (1987), it follows that the

present result is valid in the case of v(S) = 0. Now, as in Davies and

Shanbhag (1987), we can assume without loss of generality the measure

TAL
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u + v in (3,2) to be o-finite and hence both measures u and v to be
g-finite, Using Fubini's theorem and an argument essentially of the type

used in establishing (2.5), we get in view of (3.1) that

n
&(x) = [Ssu+y)(u+m§0v*2*u*'“)(dy)

+ ISH(X +y)v*u*("+”(dy)- x € S. (3.3)

(It may be noted here that by v*zi'u*m, we really mean the measure on S

given by

Is"'ISI{QSG(x1 .....xmz)) PXyteatx o6 B}"(dx’l )V(dxz)"(dx3)“'u(dxm+2)

u*(n+1)

for each Borel set B; the measure v * is defined analogously.)

We have in view of (3.2),

Js*'(x syt M (ay) < JS(G(x ty) #HGe+y)) v w07 (dy)
= JSE*(E(X +.Vr')) V* U*(n+])(d.Y)'

xeS, n>0, (3.4)

where £ is the g, of our theorem when G + H is taken in place of G,
u + v is taken in place of u, and v = 0, and E* is the corresponding

expectation relative to the concerned probability measure. The right-

hand side of (3.4) equals for each x € S and n > 0

E*(e(x.-)(f s(y.-)u(dy))"”[ a(y.-)v(dy))
S S

with

WO LTI Vi d e T ads)
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0< [ slyadutan) =1 - [ Elyadnlan) <1 s, I9) .
S S

(1n -obvious notation) and
E*(z(x,-))(= & x) +H(x)) <w for all x € S.
The Lebesgue dominated convergence theorem implies then that the right-hand
side of (3.4) and hence the second integral in (3.3) tends to zero as
n -+, We then get from (3,3)

a(x) = [Sc(x+y)(u+ fov*z*u*'“)(dy), xes. (3.5)
m=

(Note that to obtain (3.5) from (3.1), the part supp(v) < S in Condition A
is not used.) The same equation is also valid for H by symmetry. Suppose
we denote the measure appearing in (3.5) by 0. In view of (3.5) and
Theorem 1 of Davies and Shanbhag (1987), we have either G(0) = 0 or there
exists a probability space (Q], 4]. P(l)) and a product measurable func-
tion 5(]): Sxﬂ]-+ R, such that all the conditions appearing in Theorem 1 of
Davies and Shanbhag (1987) (with obvious notational changes) are satisfied;

an’ analogous result is also valid for H. From the equations corresponding

to (17), (18) and (19) in Theorem 1 of Davies and Shanbhag (1987), and the

stipulation that supp(v) = S, we get in view of Fubini's theorem

Lo e o M

(1 - fsg(i)(y,.)u(dy))Z - ([SE(i)(Y.-)v(dy))z as. )]
Pl (3.6)

{In view of (19), Fubini's theorem works here; for the details as to how
the theorem applies, see Section 2 and especially Lemma 1 of Davies and

Shanbhag (1987).) From (3.6), we get

SO TV LS LAY

%"y




TR TR R WO RS W ATAT USRS AT R

. 12

3

s

st * .

" JE(‘)(y.-)(u +v)(dy) =1 a.s. ey, 5=, (3.7)
S

" On taking the expectations in (3.7) and using Fubini's theorem once

again, we get in view of (16) of Davies and Shanbhag (1987)

; [ 6(y) (s +)(dy) = 6(0)
S

(3.8)
jsu(y)(uw)(dy) = H(0)

By 3

If G(x) > 0, then applying the first result of (3.8) to G(x +°), we see

-
e’

R that

jse(xw)(uw)(dy) - 6(x). (3.9)

This last identity is also valid if G(x) = 0 since in that case, in view

of Condition A, it follows trivially from (3.5) that G(x +y) = 0 for every

by y € supp(u +v) (indeed from Lemma 5 of Davies and Shanbhag (1987) it follows
that this is so for every y € S). Thus, it follows that (3.9) is valid for
every x € S. The identity is also valid for H by symmetry. Since the

e version of the present theorem is valid for the special case of v(S) = 0,

we have now probability spaces (ni, Qi, Pi)’ i = 1,2 and product measurable
*

» functions P Sx@; +R,, 1 = 1,2 such that the analogues of (i) and (i4)

; with P replaced by P, and the obvious result corresponding to (iii) hold.

L)

Considering (2, 4, P) to be the product probability space corresponding to
(2,, 9,

;» Py)s 1 =1,2 and defining

W RO R R A A O R]

*
Ei(x,(m1,w2)) = Ei(x’wi)’ i=1,2, X €S, Wy € Q], Wy € 92,

" we arrive at the required result.

- R
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Remark 2. In view of the remark made immediately after (3.5) and the
crucial role played by (3.5) in the proof of Theorem 2, it should be pos-
sible to give other versions of Theorem 2 altering the requirements in

Condition A,

Remark 3. 1f S is countable, clearly Theorem 2 is valid with a.s. [P]
deleted in (ii) and (iii). This result yields among other things a recent

result of Ressel (1985) as a special case.

Remark 4. Suppose S is a closed subsemigroup of a locally compact
second countable Hausdorff Abelian group and we have a compact subset K of S,
which is the closure of a nonempty open subset of the group, and a subset

D* dense in supp(v +u) with the property that for every x € D* \{0} there

exists an x' e K such that x € S + x'. Then Theorem 2 remains valid with
a.s. [Pi] in (i) and (ii) deleted and also Ei(°,w) as (p +v)-harmonic
exponential functions on S for each w € 9. This follows from the argument
of Davies and Shanbhag (1987) appearing on pages 27 and 28 in the proof of

Theorem 2.

Ll
pd B ot B SLPLY g S e il

COROLLARY 3. Let n > 1, S = mj_;S, with S; = Z(=1{0,#1,22,...}) or

N0(= {0,1,2,...}) or -Ny or Ror R, or -R,_ and let 1 be the restriction to §
S of a Haar measure on the smallest subgroup of R" containing S, Let é
g: S+ R, and h: S + R, be Borel measurable functions that are locally inte- ;
grable with respect to A, and y and v be a o-finite measure on S with a
u({0}) + v({0}) < 1. Assume that Condition A is met. Then ¢
o

d

o) = [Sg(-w)u(dy) ; jsh<-+y>v(dy> a.e. 1] '

h(-) = [Sh<-+y>u(dy) + [Sg(-w)v(dy) a.e. ] a

!

‘

4
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implies that

g(-) = J e<°’X>u](dx) a.e. [1)
['“sw]n

and

h(:) = J e<°’X>a2(dx) a.e. [1]
['“a“]n

where a and a, are measures on [-w,eo]n such that
“i({xe[-w,“']n: fse<x’y>(u+v)(dy) #1 or
%
i

<X,y> is undefined for some yeS}) =0, i =1,2

(and we define e™" =0, e = = and O+ = Q).

Proof. The result follows essentially from the arguments of Davies
and Shanbhag (1987) used to prove Corollary 2 of Theorem 2. Alternatively
one could prove this result as follows., Without loss of generality, we
can assume S = n?=]si with the first m of the 5S;'s to be either equal to
Z or NO and the remaining Si's to be equal to R or R, where m is a fixed
integer such that 0 <m < n. For every positive integer k, take a to be
the point in R2 that has first m coordinates to be equal to zero and
the remaining coordinates equal to k']. Observe that for each k,

G (+) = {kag(--+y)A(dy)}/A(Qk) and H, () = {kah(-'+y)A(dy)}/A(Qk) with
Q = [O,ak] are continuous functions satisfying the requirements of Theo-
rem 2. In view of what is said in Remark 4, it follows that in the pre-
sent case the result in terms of (u+v)-harmonic exponential functions is
valid. Also in view of the local integrability of g and h, G, > 9 and

Hk + h, a.e, [Aj: Using the relevant continuity theorem for Fourier

transforms of measures, we can then conclude that the corollary is valid.

(]
T R T A S N g
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(This argument in the specialized situation of the Davies~Shanbhag problem

was hinted in Remark 6 of Davies and Shanbhag (1987).)

Remark 5, There are some typoaraphical/printing errors or minor

inaccuracies in Davies and Shanbhag (1987). Although most of these are
easily detectable, it may be noted in particular that in this paper in the
last line of the proof of Lemma 1, Bg has appeared as Bo; in Remark 2,
(3) has appeared in place of (10); in Remark 4, + is more appropriate
than y and Condition B is more appropriate than (d) of Condition A.
Also the definition of N4 appearing on p.28 should have been:

“The null set on which n(x,+) = n(0,+)&(x,-) for some x or £(x+y,:) ¢#

g(x,+)&(y,+) for all x, y in a fixed countable dense subset S' of S."

Remark 6. From Ramachandran et al (1987), it is evident that in the
case of S = R or R+ orZ or IN0 (or -R, or -NO), except in the case of

v(S) = 0, the G and H in Theorem 2 are equal. In general, however, this situ-

ation does not remain valid (a]though it is always true that IS(H(- +y)v(dy)
ISG(--+y)v(dy)>. This is illustrated by the following example.

EXAMPLE., Let S = Ng and u and v be measurable on S such that y has
full support with its restriction to {{x,y): x e NO, y = 0} as a proba- 5
bility measure and yu has {(0,1)} as its support. Define

c if x=0,1,..., y=0
H(x,y) =
0 otherwise

where c is a fixed positive constant, and take G = 0, It trivially follows

of Theorem 2 are met. However, we do not have here G = H. The same point

:
N
N
hY
that, in this case, the G and H satisfy (3.1) and also all the requirements v
by
could obviously be illustrated from several other examples, ;
]
L]
%
h]
N
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4. A STABILITY THEOREM

We now give the following stability theorem. The stability theo-
rems are of importance in characterization theory of probability distri-
butions since they are useful in assessing whether or not the distribu-
tion can be taken to be close to a certain distribution when it satisfies
a characterization property of that distribution approximately. Since
the integral equation (1.1) is involved in characterizations of several

probability distributions, it should therefore be worthwhile to discuss

the associated stability theorem:

THEOREM 3. Let S be an Abelian metric semigroup, H: S » R, a Borel

measurable function c e [0,1) and u a o-finite measure on S such that
Hx) = [ Mt ydutay) + alx), xce s, (8.1)
S

where a is such that [a(x)| < o*(x) for all x € S with «* as a real-valued

Borel measurable function satisfying
fsa*(x +y)uldy) < ca*(x), x eS. (4.2)
Then the H can be expressed as
H(x) = Hi(x) + Hz(x), xes, (4.3)
where H] is a nonnegative Borel measurable function on S satisfying

Hy(x) = fsu1(x+y)u(dy), xes, (4.4)

and H2 is a Borel measurable function on S such that |H2(x)| is bounded

by a*(x) {1 -c)'] for each x e S.

T T
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Proof. Using Fubini's theorem, we get successively for n=1,2,...

n-1 N
1) = [ W™ + T [ atceyn™@), xes. (4.9)
S m=0 ‘S

(The requirement of the integrability of a(x+ ) with respect to the measure
u*m for each m = 0,1,..., and x € S is met in view of (4.2).) Also (4.2)

implies that

) f la(x+y)|u*"(dy) 5«*(x)(l-c)'], x € S. (4.6)
m=0 ‘S

In view of (4.6), it follows that
n-1
][ty ey
m=0 /S
and

n-1
L[ o ey
m=0 /S
converge to finite limits as n > » for each x € S with obviously the limit-
ing functions as Borel measurable functions. This observation, in turn,

implies that

n-1

L[ atxeyn™a)
S

m=0

converges as n + = to a Borel measurable function. Denote this function

by HZ‘ Because of (4.6), it follows that |H2(x)| < a*(x)(1- c)'] for each

y
e
‘
'

x ¢S. In view of (4.5), it follows that fSH(x-+y)u*"(dy) tends as n + =»

to H(x) - Hz(x), a nonnegative Borel measurable function, for each x € S.

Denote this new function by H]. From (4.5) and (4.6), it follows that

[SH(uy)u*"(dy) CHX) +a*()(T-¢)"" xes, n> .

RS e |
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N f
K Since
§I
; [ Hxr ) = | {[ H(X+y+2)u*n-](dz)}u(dﬂ,
‘:n S S S
K
g n=1,2,..., xe€8
; and H(x++) and a(x++) are u-integrable for each x € S, the Lebesgue '
4,
)
g dominated convergence theorem implies that the H] satisfies (4.4). (The
)
" fact that the H] satisfies (4.4) could also be seen by noting that, in d
¢ view of (4.1) and (4.6), we have for each x e¢ S, H](x-+-) to be u-integrable )
. satisfying )
X
» [y 0es Dutan) = [ Hexsyduten) - [ Hy0x yhuay)
. 1 2
. S S S
Vil
N ]
*
R = I H(x+y) (dy) - } fu(x +y)u™M(dy)
: S m=1’S5
= ) - alx) = T [ aleryl™(a)
m=1 'S

)
j
p 1 = H.l(x).) _,
; COROLLARY 4. Let S and A be as in Corollary 3 and c € [0,1). Let g
i: h: S+ R, and a: S + R be Borel measurable functions that are locally in-

tegrable with respect to A and u be a o-finite measure on S such that ‘
. b
> h(-) = [Sh<-+y>u<dy> ta(t)  ae. ] ]
o ‘
: P
] with |a(x)| < «*(x) for every x € S or some A-locally integrable function 1
,2 a* satisfying ]
-) :
or fsa*(X'+Y)u(dy) < ca*(x) for a.e. [A], x €S5S, .
K
;k Then the h can be represented as
L
g
n'
‘l
‘?‘ ., a ." \ ‘ "". '_ ' - -- AR S A ._\ Y SR T :.\;_&;_\:_s;uz_'.:_; ;- Ry " -.;:,:.;,.:_-»:_-u"} o :_-’_-, '4- o
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h(+) = (o) + hy(s)  ace. [n]
with

NORY ™y (dx),
["",‘”]n

v being a measure on [-=,=]" such that
v({x e [-=,=]": [ e<x’y>u(dy) # 1 or <x,y> is undefined for
S

some y € S}) =

and h2 as a A-locally integrable Borel measurable function on S satisfying

|h2(x)| < a®(x)(1- )7 for every x € S.

Proof., The result follows from the argument of the proof of Corol-
lary 3. In this case, the Hk defined in the proof of Corollary 3 satisfies

(4.1) with a replaced by o s Where ap is such that

o () = 1 al+MaDNRY. k=12,
Q

o obviously satisfies (4.2) in the statement of Theorem 3 with a: analog-

ously defined and we get in obvious notation

H (x) = Hy (x) + Ho (X}, x €S, k=1,2,... (4.7)

with Hlk and H2k satisfying the conditions corresponding to those stated
in the statement of Theorem 3. The continuity theorem used in the proof
of Corollary 3 implies, in view of the local integrabilicy of h, a and a*,
that the present corollary is then valid. (Incidentally, in the statement

of the corollary, the local integrability of « is implied by that of o*

and hence one could have avoided mentioning it specifically.)

s
g
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Remark 7, In the case of S = R the result of Corollary 4 when u

+’

is a probability measure and o*(x) = c'e &%

» X > 0 with ¢ > 0 is arrived
at by Gu and Lau (1984) through their Theorem 1. However, it may be noted
that the Gu-Lau paper contains some minor inaccuracies. For instance, in
the proof of Theorem 1 as well as of Theorem 2 of the paper, in many

places 'a.e.’'

is not mentioned even when the argument used required this .
to be there. It is also worth pointing out here that in Section 4 of the

_paper, Gu and Lau (1984) discuss three stability results concerning prob-
ability distributions through their Theorems 4.1, 4.2 and 4.3. Certain
versions of these results follow as special cases of our Corollary 4.
(Incidentally, we may point out here that since the error terms are

1

usually small, ¢ ' is better as a notation than the Gu-lLau ¢ mentioned

above in the exponent of a*(x).)
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5. APPLICATIONS OF RESULTS IN CHARACTERIZATION THEORY

As mentioned in the Introduction of this paper, characterization
theory of probability distributions on R or R+ have several results in-
volving the convolution equation. Galambos and Kotz (1978), M.B, Rao
and Shanbhag (1982), Rao (1983), Rao and Shanbhag (1986) and Davies and
Shanbhag (1987) have either reviewed or implicitly discussed the litera-
ture in this connection. Klebanov (1980), Sahabov and Geshev (1974) and
Alzaid et ai (1987) are among others discussing the literature on variants
or extensions of the specialized versions of the convolution equation,

There exist also results on multivariate brobabi]ity distributions
involving the equation (1.1) for S = R2 or S = NS. A brief account of
such results is given by Davies and Shanbhag (1987). The authors of this
last paper have also indicated the possibility of arriving at further
characterizations of multivariate probability distributions by extending
in particular the strong memoryless characterization property of the ex-
ponential distributions arrived at by Ramachandran (1979). This includes
as a special case the extension of the characterization of the exponential
distribution based on the memoryless property at certain specific points
given by Marsaglia and Tubilla (1975) to the case of multivariate proba-
bility distributions.

The results arrived at in the present paper, besides extending the
important results of Choquet and Deny (1960) and Deny (1961) to more
general situations, yield several of the other characterization results
falling beyond the scope of Davies and Shanbhag (1987) as special cases.
In particular, the results of Section 2 of the present paper, especially

Corollary 1, give the characterization discussed in Kagan et al (1973),
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Shimizu (1969, 1978) and Davies and Shimizu (1976) of nonvanishing charact-

istic functions ¢ on R satisfying the functional equation

ne(t) = I(O ne(tuddu(u) + [ e, (5.1)

telR+,

when u and v are o-finite measures satisfying some mild conditions. (To
see the application of Corollary 1, express (5.1) in terms of the corres-
ponding two equations satisfied by —Re(]n¢(t)) and Im(1n¢(i)) respectively.)
The multivariate extension of the result cited is also now easy to obtain;
the details about this latter characterization will be provided in a
forthcoming review paper to appear in the Festschrift volume for
P. R. Krishnaiah.

The results given in Section 3 of the present paper obviously extend
the result given by Ramachandran et al (1987) although we have not exploited
fully the line of approach of this last paper. Also these results are

connected with the results of Section 2 since (3.1) is equivalent to

G(x) +H(x) [S(G(x +y) + H(x+y)) (u+v)(dy), x e,

500 - M) = [ (849 - Moy Govd@n), xess.

Finally, the results on a stability version of the convolution
equation presented in Section 4 give as special cases, as mentioned earlier,
the stability Theorem 1 of Gu and Lau (1984) and also certain versions of
the stability results on the exponential and Pareto distributions given
in this paper. A stability result corresponding to the multivariate

generalization of Rahachandran's (1979) characterization of the exponen-
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tial distributions is easy to obtain as follows. Suppose we define X and
Y to be n-component random vectors as in Davies and Shanbhag (1987) on
page 32 with a modification that P{X>Y+x|X>Y} = P(X>x} is replaced by
PLX> Y+ x|X> ¥} = PUX> x} (1-5(x)), where |S(x)| < Ke™<"** with K eR,
~and n € Rf and # 0. Then, in view of Corollary 4, after a minor manipu-

lation, it follows that

P{X> x} (1 - 5*(x)) = ‘1' 5*( 0) I exp{-<,x>hu(dr), x eRD,
- S(0 n
R,

where u is as defined in Davies and Shanbhag (1987), for some S* such that
|S*(x)| < Kexpl-<n,x>}(1-¢)" with c = E{exp{-<n+-a,Y>})(P{X>-Y})'] when-
ever there exists an u € R" such that ¢ < 1 and P{X > xYexp{<a,x>} is
component-wise decreasing on Rﬁ. One could obviously extend this result

by replacing exp{-<n,x>} by an appropriate Laplace-Stieltjes transform.
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